Allington, D. (2016). ‘Power to the reader’ or ‘degradation of literary taste’? Professional critics and Amazon customers as reviewers of The Inheritance of Loss. Language and Literature, 25(3), 254–278. https://doi.org/10.1177/0963947016652789
Antoniak, M., Walsh, M., & Mimno, D. (2021). Tags, Borders, and Catalogs: Social Re-Working of Genre on LibraryThing. Proceedings of the ACM on Human-Computer Interaction, 5(CSCW1), 1–29. https://doi.org/10.1145/3449103
Bail, C. (2016). Graph-Based Automated Text Analysis (0.1.1) [R]. https://github.com/cbail/textnets
Bálint, K., Hakemulder, F., Kuijpers, M., Doicaru, M., & Tan, E. S. (2016). Reconceptualizing foregrounding: Identifying response strategies to deviation in absorbing narratives. Scientific Study of Literature, 6(2), 176–207. https://doi.org/10.1075/ssol.6.2.02bal
Benoit, K., & Matsuo, A. (2020). spacyr: Wrapper to the “spaCy” “NLP” Library. https://CRAN.R-project.org/package=spacyr
Benoit, K., Watanabe, K., Wang, H., Nulty, P., Obeng, A., Müller, S., & Matsuo, A. (2018). quanteda: An R package for the quantitative analysis of textual data. Journal of Open Source Software, 3(30), 774. https://doi.org/10.21105/joss.00774
Bessi, A., & Briatte, F. (2016). disparityfilter: Disparity Filter Algorithm for Weighted Networks. https://CRAN.R-project.org/package=disparityfilter
Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(P10008). https://doi.org/10.1088/1742-5468/2008/10/P10008
Bondi, M., & Scott, M. (2010). Keyness in Texts. John Benjamins Publishing.
Boot, P. (2023). ‘A pretty sublime mix of WTF and OMG’. Four explorations into the practice of evaluation on online book reviewing platforms. Journal of Cultural Analytics, 7(2). https://doi.org/10.22148/001c.68086
Busselle, R., & Bilandzic, H. (2009). Measuring Narrative Engagement. Media Psychology, 12(4), 321–347. https://doi.org/10.1080/15213260903287259
Chang, K., Hu, Y., Shang, W., Sharma, A., Singhal, S., Underwood, T., Witte, J., & Wu, P. (2020). Book Reviews and the Consolidation of Genre. ADHO 2020. DH2020. https://hcommons.org/deposits/item/hc:31913/
Choi, Y., & Joo, S. (2020). Identifying Facets of Reader-Generated Online Reviews of Children’s Books Based on a Textual Analysis Approach. The Library Quarterly, 90(3), 349–363. https://doi.org/10.1086/708962
Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research. InterJournal, Complex Systems, 1695.
Cuilla, K. (2022). reactablefmtr: Streamlined Table Styling and Formatting for Reactable (R package version 2.0.0). https://CRAN.R-project.org/package=reactablefmtr
Dasaprakash, K., & Shaikh, N. (2019). Entity Extraction and Classification using SpaCy. https://kaggle.com/code/curiousprogrammer/entity-extraction-and-classification-using-spacy
Doche, A., & Ross, A. S. (2022). ‘Here is my shameful confession. I don’t really “get” poetry’: Discerning reader types in responses to Sylvia Plath’s Ariel on Goodreads. Textual Practice, 1–21. https://doi.org/10.1080/0950236X.2022.2082516
Driscoll, B., & Rehberg Sedo, D. (2019). Faraway, So Close: Seeing the Intimacy in Goodreads Reviews. Qualitative Inquiry, 25(3), 248–259. https://doi.org/10.1177/1077800418801375
Dunning, T. (1993). Accurate methods for the statistics of surprise and coincidence. Computational Linguistics, 19(1), 61–74.
Eder, M. (2017). Visualization in stylometry: Cluster analysis using networks. Digital Scholarship in the Humanities, 32(1), 50–64. https://doi.org/10.1093/llc/fqv061
Fabry, R. E., & Kukkonen, K. (2019). Reconsidering the Mind-Wandering Reader: Predictive Processing, Probability Designs, and Enculturation. Frontiers in Psychology, 9, 2648. https://doi.org/10.3389/fpsyg.2018.02648
Fantasy Books | Goodreads. (2023, May 3). Goodreads. https://www.goodreads.com/genres/fantasy
Fiction Books | Goodreads. (2023, May 3). Goodreads. https://www.goodreads.com/genres/fiction
Gadamer, H.-G. (2010). Hermeneutik I. Wahrheit und Methode: Grundzüge Einer Philosophischen Hermeneutik. Mohr Siebeck.
Hall, G. (2008). Empirical research into the processing of free indirect discourse and the imperative of ecological validity. In S. Zyngier, M. Bortolussi, A. Chesnokova, & J. Auracher (Eds.), Directions in Empirical Literary Studies: In honor of Willie van Peer. John Benjamins Publishing.
Herrmann, J. B. (n.d.). In a test bed with Kafka. Introducing a mixed-method approach to digital stylistics.
Hoffstaedter, P. (1987). Poetic text processing and its empirical investigation. Poetics, 16(1), 75–91. https://doi.org/10.1016/0304-422X(87)90037-4
Holur, P., Shahsavari, S., Ebrahimzadeh, E., Tangherlini, T. R., & Roychowdhury, V. (2021). Modelling social readers: Novel tools for addressing reception from online book reviews. Royal Society Open Science, 8(12), 210797. https://doi.org/10.1098/rsos.210797
Hyland, K. (1998). Boosting, hedging and the negotiation of academic knowledge. Text & Talk, 18(3), 349–382. https://doi.org/10.1515/text.1.1998.18.3.349
Iser, W. (1976). Der Akt des Lesens. Theorie ästhetischer Wirkung. Wilhelm Fink Verlag.
Jacobs, A. M. (2015). The scientific study of literary experience: Sampling the state of the art. Scientific Study of Literature, 5(2), 139–170. https://doi.org/10.1075/ssol.5.2.01jac
Jannidis, F., Pielström, S., Schöch, C., & Vitt, T. (2015). Improving Burrows’ Delta – An empirical evaluation of text distance measures.
Jauß, H. R. (1996). Literaturgeschichte als Provokation der Literaturwissenschaft. In Texte zur Literaturtheorie der Gegenwart. Philipp Reclam jun.
Jockers, M. L. (2013). Macroanalysis: Digital Methods and Literary History. University of Illinois Press. http://ebookcentral.proquest.com/lib/umainz/detail.action?docID=3414227
Klie, J.-C., Bugert, M., Boullosa, B., Eckart de Castilho, R., & Gurevych, I. (2018). The INCEpTION Platform: Machine-Assisted and Knowledge-Oriented Interactive Annotation. Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations, 5–9. https://www.aclweb.org/anthology/C18-2002
Koolen, M., Boot, P., & van Zundert, J. J. (2020). Online Book Reviews and the Computational Modelling of Reading Impact. Proceedings of the Workshop on Computational Humanities Research (CHR 2020), 2723, 149–169.
Kuijpers, M. M. (2022). Bodily involvement in readers’ online book reviews: Applying Text World Theory to examine absorption in unprompted reader response. Journal of Literary Semantics, 51(2), 111–129. https://doi.org/10.1515/jls-2022-2055
Kuijpers, M. M., Douglas, S., & Bálint, K. (2021). Narrative Absorption: An Overview. In Handbook of Empirical Literary Studies (pp. 279–304). De Gruyter. https://doi.org/10.1515/9783110645958-012
Kuijpers, M. M., Hakemulder, F., Tan, E. S., & Doicaru, M. M. (2014). Exploring absorbing reading experiences: Developing and validating a self-report scale to measure story world absorption. Scientific Study of Literature, 4(1), 89–122. https://doi.org/10.1075/ssol.4.1.05kui
Kuijpers, M. M., Lusetti, M., Lendvai, P., & Rebora, S. (2023). Annotating for absorption in online book reviews. https://docs.google.com/document/d/1zVnsJ6h0fxHoMbzDF9Za59HBL-V8ZSst/edit?usp=embed_facebook
Kuijpers, M. M., Lusetti, M., Renner, L., Ruh, L., Tadres, J., Vogelsanger, J., Rebora, S., & Lendvai, P. (2023). Absorption in Online Reader Reviews Annotation Guidelines. https://docs.google.com/document/d/1S7tTblCvQ-AJdqJaOqxqxM74APGiBR4h/edit?usp=embed_facebook
Kuiken, D., & Douglas, S. (2017). Chapter 11. Forms of absorption that facilitate the aesthetic and explanatory effects of literary reading. In F. Hakemulder, M. M. Kuijpers, E. S. Tan, K. Bálint, & M. M. Doicaru (Eds.), Linguistic Approaches to Literature (Vol. 27, pp. 217–249). John Benjamins Publishing Company. https://doi.org/10.1075/lal.27.12kui
Kukkonen, K. (2020). Probability designs: Literature and predictive processing. Oxford University Press, USA.
Lin, G. (2023). reactable: Interactive Data Tables for R (R package version 0.4.3). https://CRAN.R-project.org/package=reactable
Manning, C. D., Raghavan, P., & Schutze, H. (2008). Introduction to Information Retrieval.
Nuttall, L. (2017). Online readers between the camps: A Text World Theory analysis of ethical positioning in We Need to Talk About Kevin. Language and Literature: International Journal of Stylistics, 26(2), 153–171. https://doi.org/10.1177/0963947017704730
Nuttall, L., & Harrison, C. (2020). Wolfing down the Twilight series: Metaphors for reading in online reviews. Contemporary Media Stylistics, 35–60.
Päpcke, S., Weitin, T., Herget, K., Glawion, A., & Brandes, U. (2022). Stylometric similarity in literary corpora: Non-authorship clustering and Deutscher Novellenschatz. Digital Scholarship in the Humanities, fqac039. https://doi.org/10.1093/llc/fqac039
Pedersen, T. L. (2022). ggraph: An Implementation of Grammar of Graphics for Graphs and Networks. https://CRAN.R-project.org/package=ggraph
Pedersen, T. L., Pedersen, M. T. L., LazyData, T., Rcpp, I., & Rcpp, L. (2020). Package “ggforce.” Accelerating “Ggplot2.” Version 0.3, 2.
Peplow, D., & Carter, R. (2023). Stylistics and real readers. In M. Burke (Ed.), The Routledge Handbook of Stylistics (pp. 472–488). Taylor & Francis.
Pianzola, F., Rebora, S., & Lauer, G. (2020). Wattpad as a resource for literary studies. Quantitative and qualitative examples of the importance of digital social reading and readers’ comments in the margins. PLOS ONE, 15(1), e0226708. https://doi.org/10.1371/journal.pone.0226708
R Core Team. (2023). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/
Rebora, S., Boot, P., Pianzola, F., Gasser, B., Herrmann, J. B., Kraxenberger, M., Kuijpers, M. M., Lauer, G., Lendvai, P., Messerli, T. C., & Sorrentino, P. (2021). Digital humanities and digital social reading. Digital Scholarship in the Humanities, 36(2), ii230–ii250. https://doi.org/10.1093/llc/fqab020
Rebora, S., Kuijpers, M., & Lendvai, P. (2020). Mining Goodreads. A Digital Humanities Project for the Study of Reading Absorption. Sharing the Experience: Workflows for the Digital Humanities. Proceedings of the DARIAH-CH Workshop 2019. DARIAH-CH Workshop 2019, Neuchâtel: DARIAH-CAMPUS.
Salgaro, M. (2021). The History of the Empirical Study of Literature from the Nineteenth to the Twenty-First Century. In Handbook of Empirical Literary Studies (pp. 515–542). De Gruyter. https://doi.org/10.1515/9783110645958-020
Savolainen, R. (2019). Sharing information through book reviews in blogs: The viewpoint of Rosenblatt’s reader-response theory. Journal of Documentation, 76(2), 440–461. https://doi.org/10.1108/JD-08-2019-0161
Serrano, M. Á., Boguñá, M., & Vespignani, A. (2009). Extracting the multiscale backbone of complex weighted networks. Proceedings of the National Academy of Sciences, 106(16), 6483–6488. https://doi.org/10.1073/pnas.0808904106
Sievert, C. (2020). Interactive Web-Based Data Visualization with R, plotly, and shiny. Chapman and Hall/CRC. https://plotly-r.com
Steiner, A. (2008). Private Criticism in the Public Sphere: Personal Writing on Literature in Readers’ Reviews on Amazon. Participations, 5(2).
Swann, J., & Allington, D. (2009). Reading groups and the language of literary texts: A case study in social reading. Language and Literature, 18(3), 247–264. https://doi.org/10.1177/0963947009105852
Thissen, B. A. K., Menninghaus, W., & Schlotz, W. (2018). Measuring Optimal Reading Experiences: The Reading Flow Short Scale. Frontiers in Psychology, 9. https://www.frontiersin.org/articles/10.3389/fpsyg.2018.02542
Tselenti, D., Cardoso, D., & Carvalho, J. (2023). Constructing Sexual Victimization: A Thematic Analysis of Reader Responses to A Literary Female-on-Male Rape Story on Goodreads. The Journal of Sex Research, 1–15. https://doi.org/10.1080/00224499.2023.2172135
Walsh, M., & Antoniak, M. (2021). The Goodreads “Classics”: A Computational Study of Readers, Amazon, and Crowdsourced Amateur Criticism. Journal of Cultural Analytics, 6(2). https://doi.org/10.22148/001c.22221
Whiteley, S., & Canning, P. (2017). Reader response research in stylistics. Language and Literature, 26(2), 71–87. https://doi.org/10.1177/0963947017704724
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org
Wickham, H. (2022). stringr: Simple, Consistent Wrappers for Common String Operations (R package version 1.4.1). https://CRAN.R-project.org/package=stringr
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686
Wickham, H., François, R., Henry, L., & Müller, K. (2022). dplyr: A Grammar of Data Manipulation (R package version 1.0.10). https://CRAN.R-project.org/package=dplyr
Wickham, H., & Girlich, M. (2022). tidyr: Tidy Messy Data (R package version 1.2.1). https://CRAN.R-project.org/package=tidyr
Wickham, H., Hester, J., & Bryan, J. (2022). readr: Read Rectangular Text Data (R package version 2.1.3). https://CRAN.R-project.org/package=readr
Young Adult Books | Goodreads. (2023, May 3). Goodreads. https://www.goodreads.com/genres/young-adult
Zhang, C., Tong, T., & Bu, Y. (2019). Examining differences among book reviews from various online platforms. Online Information Review, 43(7), 1169–1187. https://doi.org/10.1108/OIR-01-2019-0037